Jurusan Manajemen E-books

Linear

Download E-books Coding the Matrix: Linear Algebra through Applications to Computer Science PDF

A fascinating advent to vectors and matrices and the algorithms that function on them, meant for the coed who is familiar with find out how to application. Mathematical options and computational difficulties are inspired by way of purposes in desktop technology. The reader learns through doing, writing courses to enforce the mathematical thoughts and utilizing them to hold out initiatives and discover the functions. Examples comprise: error-correcting codes, alterations in portraits, face detection, encryption and secret-sharing, integer factoring, removal point of view from a picture, PageRank (Google's rating algorithm), and melanoma detection from mobile beneficial properties. A significant other site,

codingthematrix.com

presents info and aid code. many of the assignments may be auto-graded on-line. Over 200 illustrations, together with a variety of proper xkcd comics.

Chapters: The Function, The Field, The Vector, The Vector Space, The Matrix, The Basis, Dimension, Gaussian Elimination, The internal Product, Special Bases, The Singular worth Decomposition, The Eigenvector, The Linear Program

Show description

Read Online or Download Coding the Matrix: Linear Algebra through Applications to Computer Science PDF

Similar Linear books

Algebraic and Analytic Methods in Representation Theory

This publication is a compilation of numerous works from well-recognized figures within the box of illustration concept. The presentation of the subject is exclusive in delivering numerous diversified issues of view, which may still makethe publication very beneficial to scholars and specialists alike.

Ring Theory, Student Edition

This is often an abridged variation of the author's earlier two-volume paintings, Ring conception, which concentrates on crucial fabric for a basic ring thought direction whereas ommitting a lot of the cloth meant for ring conception experts. it's been praised via reviewers:**"As a textbook for graduate scholars, Ring concept joins the easiest.

Additional info for Coding the Matrix: Linear Algebra through Applications to Computer Science

Show sample text content

143 three. 1. 1 Definition of linear blend . . . . . . . . . . . . . . . . . . . . . . . . 143 three. 1. 2 makes use of of linear combos . . . . . . . . . . . . . . . . . . . . . . . . . . one hundred forty four three. 1. three From coefficients to linear blend . . . . . . . . . . . . . . . . . . . . 146 three. 1. four From linear mix to coefficients . . . . . . . . . . . . . . . . . . . . 147 three. 2 Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 three. 2. 1 Definition of span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 three. 2. 2 A process of linear equations implies different equations . . . . . . . . . . . . 149 three. 2. three turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 three. 2. four Linear mixtures of linear mixtures . . . . . . . . . . . . . . . . . 152 three. 2. five commonplace turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 three. three The geometry of units of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . a hundred and fifty five three. three. 1 The geometry of the span of vectors over R . . . . . . . . . . . . . . . . . a hundred and fifty five three. three. 2 The geometry of resolution units of homogeneous linear structures . . . . . . . 157 three. three. three the 2 representations of apartments containing the beginning . . . . . . . . . . . . 159 three. four Vector areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . one hundred sixty three. four. 1 What’s universal to the 2 representations? . . . . . . . . . . . . . . . . . one hundred sixty three. four. 2 Definition and examples of vector area . . . . . . . . . . . . . . . . . . . 161 three. four. three Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 three. four. four *Abstract vector areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 three. five Affine areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 three. five. 1 residences that don’t struggle through the beginning . . . . . . . . . . . . . . . . . . . . 164 three. five. 2 Affine combos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 three. five. three Affine areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 three. five. four Representing an affine house because the resolution set of a linear process . . . . . one hundred seventy three. five. five the 2 representations, revisited . . . . . . . . . . . . . . . . . . . . . . 171 three. 6 Linear platforms, homogeneous and in a different way . . . . . . . . . . . . . . . . . . . . . 176 three. 6. 1 The homogeneous linear process such as a common linear process 176 three. 6. 2 variety of strategies revisited . . . . . . . . . . . . . . . . . . . . . . . . . 178 three. 6. three in the direction of intersecting a airplane and a line . . . . . . . . . . . . . . . . . . . 179 three. 6. four Checksum capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 three. 7 evaluate questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 three. eight difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 four The Matrix four. 1 what's a matrix? . . . . . . . . . . . . . . . . . . four. 1. 1 conventional matrices . . . . . . . . . . . . . four. 1. 2 The matrix printed . . . . . . . . . . . . . four. 1. three Rows, columns, and entries . . . . . . . . . four. 1. four Our Python implementation of matrices . . four. 1. five id matrix . . . . . . . . . . . . . . . . four. 1. 6 changing among matrix representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 185 185 187 188 189 a hundred ninety a hundred ninety CONTENTS four. 1. 7 matutil. py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Column area and row house . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Matrices as vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Matrix-vector and vector-matrix multiplication by way of linear combos . four. five. 1 Matrix-vector multiplication by way of linear combos . . . . . . . . four. five. 2 Vector-matrix multiplication when it comes to linear mixtures .

Rated 4.32 of 5 – based on 31 votes